Köderstreifen / Literaturverzeichnis

    Agriculture/Crop production/fertiliser/artificial soil products

  1. Adair, K. L., Wratten, S., Barnes, A. M., Waterhouse, B. R., Smith, M., Lear, G., Boyer, S. (2014). Effects of biosolids on crop yield and belowground communities. Ecological Engineering, 68, 270-278. https://doi.org/10.1016/j.ecoleng.2014.03.083
  2. Coors, A., Edwards, M., Lorenz, P., Römbke, J., Schmelz, R. M., Topp, E., Lapen, D. R. (2016). Biosolids applied to agricultural land: Influence on structural and functional endpoints of soil fauna on a short- and long-term scale. Science of the Total Environment, 562, 312-326. https://doi.org/10.1016/j.scitotenv.2016.03.226
  3. Diekötter, T., Wamser, S., Wolters, V., & Birkhofer, K. (2010). Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agriculture, Ecosystems and Environment, 137(1-2), 108-112. https://doi.org/10.1016/j.agee.2010.01.008
  4. Domene, X., Mattana, S., Hanley, K., Enders, A., & Lehmann, J. (2014). Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72, 152-162. https://doi.org/10.1016/j.soilbio.2014.01.035
  5. Fox, C. A. (2003). Characterizing soil biota in Canadian agroecosystems: State of knowledge in relation to soil organic matter. Canadian Journal of Soil Science, 83(3), 245-257. https://doi.org/10.4141/s01-060
  6. Graenitz, J., & Bauer, R. (2000). The effect of fertilization and crop rotation on biological activity in a 90 year long-term experiment. Bodenkultur, 51(2), 99-105.
  7. Jacometti, M. A., Wratten, S. D., & Walter, M. (2007). Understorey management increases grape quality, yield and resistance to Botrytis cinerea. Agriculture, Ecosystems and Environment, 122(3), 349-356. https://doi.org/10.1016/j.agee.2007.01.021
  8. Morales Salmerón, L., Martín-Lammerding, D., Tenorio Pasamón, J. L., & Sánchez-Moreno, S. (2019). Effects of cover crops on soil biota, soil fertility and weeds, and Pratylenchus suppression in experimental conditions. Nematology, 21(3), 227-241. https://doi.org/10.1163/15685411-00003208
  9. Orre-Gordon, S., Jacometti, M., Tompkins, J., & Wratten, S. (2013). Viticulture can be modified to Provide Multiple Ecosystem Services. In Ecosystem Services in Agricultural and Urban Landscapes (pp. 43-57). https://doi.org/10.1002/9781118506271.ch4
  10. Pfotzer, G. H., & Schüler, C. (1997). Effects of Different Compost Amendments on Soil Biotic and Faunal Feeding Activity in an Organic Farming System. Biological Agriculture and Horticulture, 15(1-4), 177-183. https://doi.org/10.1080/01448765.1997.9755192
  11. Prodana, M., Silva, C., Gravato, C., Verheijen, F. G. A., Keizer, J. J., Soares, A. M. V. M., Bastos, A. C. (2019). Influence of biochar particle size on biota responses. Ecotoxicology and Environmental Safety, 174, 120-128. https://doi.org/10.1016/j.ecoenv.2019.02.044
  12. Ratnadass, A., Grechi, I., Graindorge, R., Caillat, A., Préterre, A. L., & Normand, F. (2019). Effects of some cultural practices on mango inflorescence and fruit pest infestation and damage in Reunion Island: Recent progress, on-going studies and future steps. In Acta Horticulturae (Vol. 1244, pp. 159-166). https://doi.org/10.17660/ActaHortic.2019.1244.24
  13. Reinecke, A. J., Albertus, R. M. C., Reinecke, S. A., & Larink, O. (2008). The effects of organic and conventional management practices on feeding activity of soil organisms in vineyards. African Zoology, 43(1), 66-74. https://doi.org/10.3377/1562-7020(2008)43[66:teooac]2.0.co;2
  14. Richards, S., Hewson, K., Moller, H., Wharton, D., Campbell, H., Benge, J., & Manhire, J. (2007). Soil biota as indicators of soil quality in organic and integrated management kiwifruit orchards in New Zealand. In Acta Horticulturae (Vol. 753, pp. 627-632). https://doi.org/10.17660/ActaHortic.2007.753.82
  15. Sandhu, H., Wratten, S., Costanza, R., Pretty, J., Porter, J. R., & Reganold, J. (2015). Significance and value of non-traded ecosystem services on farmland. PeerJ, 2015(2). https://doi.org/10.7717/peerj.762
  16. Schirmel, J., Albert, J., Kurtz, M. P., & Muñoz, K. (2018). Plasticulture changes soil invertebrate assemblages of strawberry fields and decreases diversity and soil microbial activity. Applied Soil Ecology, 124, 379-393. https://doi.org/10.1016/j.apsoil.2017.11.025
  17. Palm oil plantation

  18. Hamdan, A.B., Mohd Tayeb, D and Ahmad, T. M. (2006). Effects of empty fruit bunch application in oil palm on a BRIS soil. Oil Palm Bulletin, 52(May), 48-58
  19. Tao, H. H., Slade, E. M., Willis, K. J., Caliman, J. P., & Snaddon, J. L. (2016). Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agriculture, Ecosystems and Environment, 218, 133-140. https://doi.org/10.1016/j.agee.2015.11.012
  20. Tao, H. H., Snaddon, J. L., Slade, E. M., Henneron, L., Caliman, J. P., & Willis, K. J. (2018). Application of oil palm empty fruit bunch effects on soil biota and functions: A case study in Sumatra, Indonesia. Agriculture, Ecosystems and Environment, 256, 105-113. https://doi.org/10.1016/j.agee.2017.12.012
  21. Wahyuningsih, R., Marchand, L., Pujianto, P., Suhardi, S., & Caliman, J. P. (2019). Impact of inorganic fertilizer to soil biological activity in an oil palm plantation. In IOP Conference Series: Earth and Environmental Science (Vol. 336). https://doi.org/10.1088/1755-1315/336/1/012017
  22. Pesticides/Biocides/fungicides/herbicides/pharmaceuticals/copper

  23. Amossé, J., Bart, S., Péry, A. R. R., & Pelosi, C. (2018). Short-term effects of two fungicides on enchytraeid and earthworm communities under field conditions. Ecotoxicology (London, England), 27(3), 300-312. https://doi.org/10.1007/s10646-018-1895-7
  24. Berenstein, G., Nasello, S., Beiguel, É., Flores, P., Di Schiena, J., Basack, S., … Montserrat, J. M. (2017). Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina. Science of the Total Environment, 586, 1254-1262. https://doi.org/10.1016/j.scitotenv.2017.02.129
  25. De Santo, F. B., Guerra, N., Vianna, M. S., Torres, J. P. M., Marchioro, C. A., & Niemeyer, J. C. (2019). Laboratory and field tests for risk assessment of metsulfuron-methyl-based herbicides for soil fauna. Chemosphere, 222, 645-655. https://doi.org/10.1016/j.chemosphere.2019.01.145
  26. Jensen, J., & Scott-Fordsmand, J. J. (2012). Ecotoxicity of the veterinary pharmaceutical ivermectin tested in a soil multi-species (SMS) system. Environmental Pollution, 171, 133-139. https://doi.org/10.1016/j.envpol.2012.07.014
  27. Knacker, T., Förster, B., Römbke, J., & Frampton, G. K. (2003). Assessing the effects of plant protection products on organic matter breakdown in arable fields - Litter decomposition test systems. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(03)00219-0
  28. Larink, O., & Sommer, R. (2002). Influence of coated seeds on soil organisms tested with bait lamina. European Journal of Soil Biology, 38(3-4), 287-290. https://doi.org/10.1016/S1164-5563(02)01161-5
  29. Marwitz, A., Ladewig, E., & Maerlaender, B. (2011). Impact of herbicide strategies on earthworm population and soil fauna activity in sugarbeet as affected by soil tillage and site characteristics. Zuckerindustrie, 136(1), 41-52.
  30. Mbodj, I., Sarr, M., & Diarra, K. (2010). Using bait lamina and litterbags, two functional methods to monitor biological activity in soil contaminated by dieldrin. Preliminary results from Dakar (Senegal) sahelian region. International Journal of Biological and Chemical Sciences, 4(1). https://doi.org/10.4314/ijbcs.v4i1.54238
  31. Nash, M. A., & Hoffmann, A. A. (2012). Effective invertebrate pest management in dryland cropping in southern Australia: The challenge of marginality. Crop Protection. https://doi.org/10.1016/j.cropro.2012.06.017
  32. Niemeyer, J. C., de Santo, F. B., Guerra, N., Ricardo Filho, A. M., & Pech, T. M. (2018). Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment. Chemosphere, 198, 154-160. https://doi.org/10.1016/j.chemosphere.2018.01.127
  33. Paulus, R., Römbke, J., Ruf, A., & Beck, L. (1999). A comparison of the litterbag-, minicontainer- and bait-lamina-methods in an ecotoxicological field experiment with diflubenzuron and Btk. Pedobiologia, 43(2), 120-133.
  34. Reinecke, A. J., Helling, B., Louw, K., Fourie, J., & Reinecke, S. A. (2002). The impact of different herbicides and cover crops on soil biological activity in vineyards in the Western Cape, South Africa. Pedobiologia, 46(5), 475-484. https://doi.org/10.1078/0031-4056-00153
  35. Santos, M. J. G., Morgado, R., Ferreira, N. G. C., Soares, A. M. V. M., & Loureiro, S. (2011). Evaluation of the joint effect of glyphosate and dimethoate using a small-scale terrestrial ecosystem. Ecotoxicology and Environmental Safety, 74(7), 1994-2001. https://doi.org/10.1016/j.ecoenv.2011.06.003
  36. Schnug, L., Jensen, J., Scott-Fordsmand, J. J., & Leinaas, H. P. (2014). Toxicity of three biocides to springtails and earthworms in a soil multi-species (SMS) test system. Soil Biology and Biochemistry, 74, 115-126. https://doi.org/10.1016/j.soilbio.2014.03.007
  37. Scholz-Starke, B., Nikolakis, A., Leicher, T., Lechelt-Kunze, C., Heimbach, F., Theien, B., Toschki, A., Ratte, H. T., Schäffer, A., Ro-Nickoll, M. (2011). Outdoor Terrestrial Model Ecosystems are suitable to detect pesticide effects on soil fauna: Design and method development. Ecotoxicology, 20(8), 1932-1948. https://doi.org/10.1007/s10646-011-0732-z
  38. Contamination/pollution/industrial areas/metals/climate change/dryness/wastewater/soil pollution remediation

  39. André, A., Antunes, S. C., Gonçalves, F., & Pereira, R. (2009). Bait-lamina assay as a tool to assess the effects of metal contamination in the feeding activity of soil invertebrates within a uranium mine area. Environmental Pollution, 157(8-9), 2368-2377. https://doi.org/10.1016/j.envpol.2009.03.023
  40. Boshoff, M., De Jonge, M., Dardenne, F., Blust, R., & Bervoets, L. (2014). The impact of metal pollution on soil faunal and microbial activity in two grassland ecosystems. Environmental Research, 134, 169-180. https://doi.org/10.1016/j.envres.2014.06.024
  41. Chapman, E. E. V., Hedrei Helmer, S., Dave, G., & Murimboh, J. D. (2012). Utility of bioassays (lettuce, red clover, red fescue, Microtox, MetSTICK, Hyalella, bait lamina) in ecological risk screening of acid metal (Zn) contaminated soil. Ecotoxicology and Environmental Safety, 80, 161-171. https://doi.org/10.1016/j.ecoenv.2012.02.025
  42. Dunger, W., Wanner, M., Hauser, H., Hohberg, K., Schulz, H. J., Schwalbe, T., Zulka, K. P. (2001). Development of soil fauna at mine sites during 46 years after afforestation. Pedobiologia, 45(3), 243-271. https://doi.org/10.1078/0031-4056-00083
  43. Edwards, C. A. (2002). Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, 38(3-4), 225-231. https://doi.org/10.1016/S1164-5563(02)01150-0
  44. Gongalsky, K. B., Filimonova, Z. V., Pokarzhevskii, A. D., & Butovsky, R. O. (2007). Differences in responses of herpetobionts and geobionts to impact from the Kosogorsky metallurgical plant (Tula region, Russia). Russian Journal of Ecology, 38(1), 52-57. https://doi.org/10.1134/S1067413607010092
  45. Groffen, T., Rijnders, J., Verbrigghe, N., Verbruggen, E., Prinsen, E., Eens, M., & Bervoets, L. (2019). Influence of soil physicochemical properties on the depth profiles of perfluoroalkylated acids (PFAAs) in soil along a distance gradient from a fluorochemical plant and associations with soil microbial parameters. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124407
  46. Hobbelen, P. H. F., van den Brink, P. J., Hobbelen, J. F., & van Gestel, C. A. M. (2006). Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area. Soil Biology and Biochemistry, 38(7), 1596-1607. https://doi.org/10.1016/j.soilbio.2005.11.010
  47. Jackson, D., Copplestone, D., Stone, D. M., & Smith, G. M. (2005). Terrestrial invertebrate population studies in the Chernobyl exclusion zone, Ukraine. Radioprotection, 40, S857-S863. https://doi.org/10.1051/radiopro:2005s1-126
  48. Kools, S. A. E., Berg, M. P., Boivin, M. E. Y., Kuenen, F. J. A., van der Wurff, A. W. G., van Gestel, C. A. M., & van Straalen, N. M. (2008). Stress responses investigated; application of zinc and heat to Terrestrial Model Ecosystems from heavy metal polluted grassland. Science of the Total Environment, 406(3), 462-468. https://doi.org/10.1016/j.scitotenv.2008.06.057
  49. Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., van Gestel, C. A. M., Hein, T., Barth, J. A. C. (2009). How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution. https://doi.org/10.1016/j.envpol.2009.06.004
  50. Menezes-Oliveira, V. B., Scott-Fordsmand, J. J., Soares, A. M. V. M., & Amorim, M. J. B. (2013). Effects of temperature and copper pollution on soil community-extreme temperature events can lead to community extinction. Environmental Toxicology and Chemistry, 32(12), 2678-2685. https://doi.org/10.1002/etc.2345
  51. Pesce, S., Campiche, S., Casado-Martinez, C., Ahmed, A. M., Bonnineau, C., Dabrin, A., Ferrari, B. J. D. (2020). Towards simple tools to assess functional effects of contaminants on natural microbial and invertebrate sediment communities. Environmental Science and Pollution Research, 27(6), 6680-6689. https://doi.org/10.1007/s11356-019-07331-z
  52. Steinmetz, Z., Kurtz, M. P., Dag, A., Zipori, I., & Schaumann, G. E. (2015). The seasonal influence of olive mill wastewater applications on an orchard soil under semi-arid conditions. Journal of Plant Nutrition and Soil Science, 178(4), 641-648. https://doi.org/10.1002/jpln.201400658
  53. Van Gestel, C. A. M., Van der Waarde, J. J., Derksen, J. G. M., Van der Hoek, E. E., Veul, M. F. X. W., Bouwens, S., Stokman, G. N. M. (2001). The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environmental Toxicology and Chemistry, 20(7), 1438-1449. https://doi.org/10.1002/etc.5620200705
  54. Methodology/laboratory test systems/minicontainer versus bait lamina versus cotton strip/modelling/ecosystem services/nutrient cycle/risk assessment

  55. Bart, S., Roudine, S., Amossé, J., Mougin, C., Péry, A. R. R., & Pelosi, C. (2018). How to assess the feeding activity in ecotoxicological laboratory tests using enchytraeids? Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-018-1701-3
  56. Eisenbeis, G., Lenz, R., & Heiber, T. (1999). Organic residue decomposition: The minicontainer-system a multifunctional tool in decomposition studies. Environmental Science and Pollution Research, 6(4), 220-224. https://doi.org/10.1007/BF02987332
  57. Eisenhauer, N., Wirsch, D., Cesarz, S., Craven, D., Dietrich, P., Friese, J., … Steinauer, K. (2014). Organic textile dye improves the visual assessment of the bait-lamina test. Applied Soil Ecology, 82, 78-81. https://doi.org/10.1016/j.apsoil.2014.05.008
  58. Gestel, C. A. M., Kruidenier, M., & Berg, M. P. (2003). Suitability of wheat straw decomposition, cotton strip degradation and bait-lamina feeding tests to determine soil invertebrate activity. Biology and Fertility of Soils, 37(2), 115-123. https://doi.org/10.1007/s00374-003-0619-0
  59. Gongalsky, K. B., Persson, T., & Pokarzhevskii, A. D. (2008). Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Applied Soil Ecology, 39(1), 84-90. https://doi.org/10.1016/j.apsoil.2007.11.007
  60. Griffiths, B. S., Römbke, J., Schmelz, R. M., Scheffczyk, A., Faber, J. H., Bloem, J., Stone, D. (2016). Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function. Ecological Indicators, 69, 213-223. https://doi.org/10.1016/j.ecolind.2016.04.023
  61. Hamel, C., Schellenberg, M. P., Hanson, K., & Wang, H. (2007). Evaluation of the “bait-lamina test” to assess soil microfauna feeding activity in mixed grassland. Applied Soil Ecology, 36(2-3), 199-204. https://doi.org/10.1016/j.apsoil.2007.02.004
  62. Heisler, C. (1993). Comparison between Bait-lamina-test and individual number of Collembola in compacted arable soils. Zoologische Beitraege, 35, 19-26.
  63. Hoffmann, H., Kratz, W. & Neinaß, J. (1991): Der Ködermembrantest - ein Screening-Test zur Ermittlung tierischer Freßaktivität in Böden. Mitteilgn. Dtsch. Bodenkdl. Gesellsch., 66, I, 507 - 510.
  64. ISO/TC 190/SC 4 (2015) Soil quality — Method for testing effects of soil contaminants on the feeding activity of soil dwelling organisms in the field — Bait-lamina test
  65. Jänsch, S., Scheffczyk, A., & Römbke, J. (2017). The bait-lamina earthworm test: a possible addition to the chronic earthworm toxicity test? Euro-Mediterranean Journal for Environmental Integration, 2(1). https://doi.org/10.1007/s41207-017-0015-z
  66. Kammenga, J. E., Dallinger, R., Donker, M. H., Köhler, H. R., Simonsen, V., Triebskorn, R., & Weeks, J. M. (2000). Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessment. Reviews of Environmental Contamination and Toxicology, 164, 93-147.
  67. Kim, S. W., Kim, D., Moon, J., Chae, Y., Kwak, J. Il, Park, Y., … An, Y. J. (2017). Earthworm dispersal assay for rapidly evaluating soil quality. Environmental Toxicology and Chemistry, 36(10), 2766-2772. https://doi.org/10.1002/etc.3832
  68. Kratz, W. (1998): The bait-lamina-test - general aspects, applications and perspectives. Environ. Sci. & Pollut. Res. 5, 94-96.
  69. Moser, T., Van Gestel, C. A. M., Jones, S. E., Koolhaas, J. E., Rodrigues, J. M. L., & Römbke, J. (2004). Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME) - An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Enchytraeids. Ecotoxicology, 13(1-2), 89-103. https://doi.org/10.1023/B:ECTX.0000012407.42358.3e
  70. O'Meara, T., Gibbs, E., & Thrush, S. F. (2018). Rapid organic matter assay of organic matter degradation across depth gradients within marine sediments. Methods in Ecology and Evolution, 9(2), 245-253. https://doi.org/10.1111/2041-210X.12894
  71. Römbke, J. (2014). The feeding activity of invertebrates as a functional indicator in soil. Plant and Soil, 383(1-2), 43-46. https://doi.org/10.1007/s11104-014-2195-5
  72. Welsch, J., Songling, C., Buckley, H. L., Lehto, N. J., Jones, E. E., & Case, B. S. (2019). How many samples? Soil variability affects confidence in the use of common agroecosystem soil indicators. Ecological Indicators, 102, 401-409. https://doi.org/10.1016/j.ecolind.2019.02.065
  73. Invasive species

  74. Bell, J. K., Siciliano, S. D., & Lamb, E. G. (2020). A survey of invasive plants on grassland soil microbial communities and ecosystem services. Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-0422-x
  75. Eisenhauer, N., Ferlian, O., Craven, D., Hines, J., & Jochum, M. (2019). Ecosystem responses to exotic earthworm invasion in northern North American forests. Research Ideas and Outcomes, 5. https://doi.org/10.3897/rio.5.e34564
  76. Pehle, A., & Schirmel, J. (2015). Moss invasion in a dune ecosystem influences ground-dwelling arthropod community structure and reduces soil biological activity. Biological Invasions, 17(12), 3467-3477.https://doi.org/10.1007/s10530-015-0971-7
  77. Forest ecosystems/tree plantations

  78. Berg, B., Johansson, M., Meentemeyer, V. & Kratz, W. (1998): Decomposition of tree root litter in a climatic transect of coniferous forests in northern Europe - a synthesis. Scandinavian Journal of Forest Research 13: 402-412.
  79. Bezkorovaynaya, I. N., Egunova, M. N., & Taskaeva, A. A. (2017). Soil invertebrates and their trophic activity in 40-year-old forest stands. Contemporary Problems of Ecology, 10(5), 524-533. https://doi.org/10.1134/S199542551705002X
  80. Geissen, V., Gehrmann, J., & Genssler, L. (2007). Relationships between soil properties and feeding activity of soil fauna in acid forest soils. Journal of Plant Nutrition and Soil Science, 170(5), 632-639. https://doi.org/10.1002/jpln.200625050
  81. Gongalskii, K. B., Pokarzhevskii, A. D., Savin, F. A., & Filimonova, Z. V. (2003). Spatial distribution of animals and variation in their trophic activity measured using the bait-lamina test in sod-podzolic soil under a spruce forest. Russian Journal of Ecology, 34(6), 395-404. https://doi.org/10.1023/A:1027312501091
  82. Irmler, U. (1998). Spatial heterogeneity of biotic activity in the soil of a beech wood and consequences for the application of the bait-lamina-test. Pedobiologia, 42(2), 102-108.
  83. Klimek, B., & Niklińska, M. (2020). Fauna activity on soils developing on dead logs in an ancient inland temperate rainforest of North British Columbia (Canada). Journal of Soils and Sediments.https://doi.org/10.1007/s11368-019-02559-1
  84. Kreyling, J., Haei, M., & Laudon, H. (2013). Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93(4), 427-433. https://doi.org/10.4141/CJSS2012-025
  85. Römbke, J., Höfert, H., Garcia, M. V. B., & Martius, C. (2006). Feeding activities of soil organisms at four different forest sites in Central Amazonia using the bait lamina method. Journal of Tropical Ecology, 22(3), 313-320. https://doi.org/10.1017/S0266467406003166
  86. Rosenfield, M. F., & Müller, S. C. (2020). Plant traits rather than species richness Explain Ecological Processes in Subtropical Forests. Ecosystems, 23(1), 52-66. https://doi.org/10.1007/s10021-019-00386-6 // https://doi.org/10.1016/j.apsoil.2010.03.008
  87. Santana, N. A., Morales, C. A. S., Silva, D. A. A. da, Antoniolli, Z. I., & Jacques, R. J. S. (2018). Soil Biological, chemical, and physical properties after a wildfire Event in a Eucalyptus Forest in the Pampa Biome. Revista Brasileira de Ciência Do Solo, 42(0).https://doi.org/10.1590/18069657rbcs20170199 // https://doi.org/10.1371/journal.pone.0029616
  88. Tongkaemkaew, U., Sukkul, J., Sumkhan, N., Panklang, P., Brauman, A., & Ismail, R. (2018). Litterfall, litter decomposition, soil macrofauna, and nutrient content in rubber monoculture and rubberbased agroforestry plantations. Forest and Society, 2(2), 138-149. https://doi.org/10.24259/fs.v2i2.4431
  89. Biodiversity research

  90. Birkhofer, K., Diekötter, T., Boch, S., Fischer, M., Müller, J., Socher, S., & Wolters, V. (2011). Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biology and Biochemistry, 43(10), 2200–2207. https://doi.org/10.1016/j.soilbio.2011.07.008
  91. Boeraeve, F., Dendoncker, N., Cornélis, J. T., Degrune, F., & Dufrêne, M. (2020). Contribution of agroecological farming systems to the delivery of ecosystem services. Journal of Environmental Management, 260. https://doi.org/10.1016/j.jenvman.2019.109576
  92. Gardi, C., Montanarella, L., Arrouays, D., Bispo, A., Lemanceau, P., Jolivet, C., Menta, C. (2009). Soil biodiversity monitoring in Europe: Ongoing activities and challenges. European Journal of Soil Science, 60(5), 807-819. https://doi.org/10.1111/j.1365-2389.2009.01177.x
  93. Greenslade, P., Bell, L., & Florentine, S. (2011). Auditing revegetated catchments in southern Australia: Decomposition rates and collembolan species assemblages. Soil Organisms, 83(3), 433-450. Retrieved from.
  94. Manning, P., Beynon, S. A., & Lewis, O. T. (2017). Quantifying immediate and delayed effects of anthelmintic exposure on ecosystem functioning supported by a common dung beetle species. PLoS ONE, 12(8). https://doi.org/10.1371/journal.pone.0182730
  95. Marx, M. T., Yan, X., Wang, X., Song, L., Wang, K., Zhang, B., & Wu, D. (2016). Soil Fauna Abundance, Feeding and Decomposition in Different Reclaimed and Natural Sites in the Sanjiang Plain Wetland, Northeast China. Wetlands, 36(3), 445-455. https://doi.org/10.1007/s13157-016-0753-8
  96. Musso, C., Miranda, H. S., Soares, A. M. V. M., & Loureiro, S. (2014). Biological activity in Cerrado soils: evaluation of vegetation, fire and seasonality effects using the “bait-lamina test.” Plant and Soil, 383(1-2), 49-58. https://doi.org/10.1007/s11104-014-2233-3
  97. Niklińska, M., & Klimek, B. (2011). Dynamics and stratification of soil biota activity along an altitudinal climatic gradient in West Carpathians. Journal of Biological Research, 16, 177-187.
  98. O'Farrell, P. J., Donaldson, J. S., & Hoffman, M. T. (2010). Vegetation transformation, functional compensation, and soil health in a semi-arid environment. Arid Land Research and Management, 24(1), 12-30. https://doi.org/10.1080/15324980903439263
  99. Podgaiski, L. R., da Silva Goldas, C., Ferrando, C. P. R., Silveira, F. S., Joner, F., Overbeck, G. E., Pillar, V. D. (2014). Burning effects on detritivory and litter decay in Campos grasslands. Austral Ecology, 39(6), 686-695. https://doi.org/10.1111/aec.12132
  100. Richards, S., Hewson, K., Moller, H., Wharton, D., Campbell, H., Benge, J., & Manhire, J. (2007). Soil biota as indicators of soil quality in organic and integrated management kiwifruit orchards in New Zealand. In Acta Horticulturae (Vol. 753, pp. 627–632). https://doi.org/10.17660/ActaHortic.2007.753.82
  101. Spehn, E. M., Joshi, J., Schmid, B., Alphei, J., & Körner, C. (2000). Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil, 224(2), 217-230. https://doi.org/10.1023/A:1004891807664
  102. WIDYASTUTI, R. A. H. A. Y. U. (2006). Feeding rate of soil animals in Different Ecosystems in Pati, Indonesia. HAYATI Journal of Biosciences, 13(3), 119–123. https://doi.org/10.1016/S1978-3019(16)30304-7
  103. Urban ecosystem studies/habitat restoration

  104. Bergman, I. E., Vorobeichik, E. L., & Ermakov, A. I. (2017). The effect of megalopolis environment on the feeding activity of soil saprophages in urban forests. Eurasian Soil Science, 50(1), 106-117. https://doi.org/10.1134/S1064229317010021
  105. Hartley, W., Uffindell, L., Plumb, A., Rawlinson, H. A., Putwain, P., & Dickinson, N. M. (2008). Assessing biological indicators for remediated anthropogenic urban soils. Science of the Total Environment, 405(1-3), 358-369. https://doi.org/10.1016/j.scitotenv.2008.06.004
  106. Littlejohn, C. P., Hofmann, R. W., & Wratten, S. D. (2019). Delivery of multiple ecosystem services in pasture by shelter created from the hybrid sterile bioenergy grass Miscanthus x giganteus. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-40696-2
  107. Maggen, J., Carleer, R., Yperman, J., Vocht, A. De, Schreurs, S., Reggers, G., & Thijsen, E. (2017). Biochar derived from the Dry, Solid Fraction of Pig Manure as Potential Fertilizer for Poor and Contaminated Soils. Sustainable Agriculture Research, 6(2), 167. https://doi.org/10.5539/sar.v6n2p167
  108. Marx, M. T., Yan, X., Wang, X., Song, L., Wang, K., Zhang, B., & Wu, D. (2016). Soil Fauna Abundance, Feeding and Decomposition in Different Reclaimed and Natural Sites in the Sanjiang Plain Wetland, Northeast China. Wetlands, 36(3), 445-455. https://doi.org/10.1007/s13157-016-0753-8
  109. Rosenfield, M. F., & Müller, S. C. (2019). Assessing ecosystem functioning in forests undergoing restoration. Restoration Ecology, 27(1), 158-167. https://doi.org/10.1111/rec.12828
  110. Sturm, M., Sturm, M., & Eisenbeis, G. (2002). Recovery of the biological activity in a vineyard soil after landscape redesign: A three-year study using the bait-lamina method. Vitis, 41(1), 43-5.
  111. Global Climate change studies

  112. Menezes-Oliveira, V. B., Scott-Fordsmand, J. J., Soares, A. M. V. M., & Amorim, M. J. B. (2014). Development of ecosystems to climate change and the interaction with pollution - Unpredictable changes in community structures. Applied Soil Ecology, 75, 24–32. https://doi.org/10.1016/j.apsoil.2013.10.004
  113. Siebert, J., Thakur, M. P., Reitz, T., Schädler, M., Schulz, E., Yin, R., Eisenhauer, N. (2019). Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. In Advances in Ecological Research (Vol. 60, pp. 25-58). https://doi.org/10.1016/bs.aecr.2019.02.002
  114. Thakur, M. P., Reich, P. B., Hobbie, S. E., Stefanski, A., Rich, R., Rice, K. E., Eisenhauer, N. (2018). Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 8(1), 75-78. https://doi.org/10.1038/s41558-017-0032-6
  115. Walter, J., Hein, R., Beierkuhnlein, C., Hammerl, V., Jentsch, A., Schädler, M., Kreyling, J. (2013). Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biology and Biochemistry, 60, 10-18. https://doi.org/10.1016/j.soilbio.2013.01.018
  116. Yin, R., Eisenhauer, N., Auge, H., Purahong, W., Schmidt, A., & Schädler, M. (2019). Additive effects of experimental climate change and land use on faunal contribution to litter decomposition. Soil Biology and Biochemistry, 131, 141-148. https://doi.org/10.1016/j.soilbio.2019.01.009
  117. Menezes-Oliveira, V. B., Scott-Fordsmand, J. J., Soares, A. M. V. M., & Amorim, M. J. B. (2014). Development of ecosystems to climate change and the interaction with pollution-Unpredictable changes in community structures. Applied Soil Ecology, 75, 24-32. https://doi.org/10.1016/j.apsoil.2013.10.004
  118. Nitrogen cycle/food chain and webs

  119. Schrama, M., Heijning, P., Bakker, J. P., van Wijnen, H. J., Berg, M. P., & Olff, H. (2013). Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia, 172(1), 231-243. https://doi.org/10.1007/s00442-012-2484-8
  120. Schuerings, J., Jentsch, A., Hammerl, V., Lenz, K., Henry, H. A. L., Malyshev, A. V., & Kreyling, J. (2014). Increased winter soil temperature variability enhances nitrogen cycling and soil biotic activity in temperate heathland and grassland mesocosms. Biogeosciences, 11(23), 7051-7060. https://doi.org/10.5194/bg-11-7051-2014
  121. Schwarz, B., Barnes, A. D., Thakur, M. P., Brose, U., Ciobanu, M., Reich, P. B., Eisenhauer, N. (2017). Warming alters energetic structure and function but not resilience of soil food webs. Nature Climate Change. https://doi.org/10.1038/s41558-017-0002-z
  122. Siebert, J., Sünnemann, M., Auge, H., Berger, S., Cesarz, S., Ciobanu, M., Eisenhauer, N. (2019). The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Scientific Reports, 9(1).
  123. Simpson, J. E., Slade, E., Riutta, T., & Taylor, M. E. (2012). Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029616
    1. Zurück zum Anfang der Seite